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ABSTRACT: In this paper, a study of light-cone distribution amplitudes for p-wave heavy
quarkonium states are presented. Within the light-front framework, the leading twist
light-cone distribution amplitudes, and their relevant decay constants, have some simple
relations. These relations can be further simplified when the non-relativistic limit and the
wave function as a function of relative momentum |&| are taken into consideration. In
addition, the x, integrations in the equations of LCDAs and £-moments can be completed
analytically when the Gaussian-type wave function is considered. After fixing the parame-
ters that appear in the wave function, the curves and the corresponding decay constants of
the LCDAs are plotted and calculated for the charmonium and bottomonium states. The
first three non-vanishing £&-moments of the LCDAs are estimated and are consistent with
those of other theoretical approaches.
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1 Introduction

Light-cone distribution amplitudes (LCDAs) of hadrons are key ingredients in the descrip-
tion of various exclusive processes of quantum Chromodynamics (QCD), and their role can
be analogous to those of parton distributions in inclusive processes. In terms of the Bethe-
Salpeter wave functions ®(u;, k;1 ), LCDAs ¢(u;) are defined by retaining the momentum
fractions u; and integrating out the transverse momenta k;; [1]. They provide essential
information on the non-perturbative structure of the hadron for QCD treatment of exclu-
sive reactions. Specifically, the leading twist LCDAs describe the probability amplitudes
to find the hadron in a Fock state with the minimum number of constituents. In addition,
the fact that B-physics exclusive processes are under investigation in BaBar and Belle ex-
periments, also urges the detailed study of hadronic LCDAs. In literature, there have been
many non-perturbative approaches to estimate LCDAs, such as the QCD sum rules [2-6],
lattice calculation [7, 8], chiral quark model from the instanton vacuum [9, 10], Nabmbu-
Jona-Lasinio model [11, 12], and the light-front quark model [13-15]. These studies have
dealt with LCDAs of pseudoscalar [3, 8-14], vector [4, 7, 13, 14], axial vector [5, 6, 15],
and tensor [6] mesons.

The present paper is devoted to the study of leading twist LCDAs of p-wave heavy
quarkonium states which include the scalar (x.o0, xp0), axial vector (xc1, Xp1, Pe, hp), and
tensor (2, Xp2) mesons. The motivation of this study is as follows. Since the discoveries



of J/¢ and T, occurring more than thirty years ago, a great deal of information on heavy
quarkonium levels and their transitions has been accumulated [16]. The numerous transi-
tions between heavy quarkonium states are classified as strong and radiative decays, which
shed light on aspects of QCD in both the perturbative and the non-perturbative regimes
(for a recent review see [17]). In particular, some experimental results regarding . mesons
have recently been reported [18-21]. Therefore, a thorough understanding of their prop-
erties, such as LCDAs which are the universal non-perturbative objects, will be of great
benefit when analyzing the hard exclusive processes with heavy quarkonium production.

It is known that heavy quarkonium is relevant to non-relativistic treatments [22]. Al-
though non-relativistic QCD (NRQCD) is a powerful theoretical tool for separating high-
energy modes from low-energy contributions, in most cases the calculation of low-energy
hadronic matrix elements has relied on model-dependent non-perturbative methods. In
this study, heavy quarkonium is explored within the light-front quark model (LFQM)
which is a promising analytic method for solving the non-perturbative problems of hadron
physics [23] as well as offers many insights into the internal structures of bound states.
The basic ingredient in LFQM is the relativistic hadron wave function which generalizes
distribution amplitudes by including transverse momentum distributions, and contains all
the information of a hadron from its constituents. The hadronic quantities are repre-
sented by the overlap of wave functions and can be derived in principle. The light-front
wave function is manifestly a Lorentz invariant, expressed in terms of internal momentum
fraction variables which are independent of the total hadron momentum. Moreover, the
fully relativistic treatment of quark spins and center-of-mass motion can be carried out
using the so-called Melosh rotation [24]. This treatment has been successfully applied to
calculate phenomenologically many important meson decay constants and hadronic form
factors [25-30]. Therefore, the main purpose of this study is the calculation of the leading
twist LCDAs of p-wave heavy quarkonium states within LFQM.

The remainder of this paper is organized as follows. In section 2, the leading twist
LCDAs of p-wave meson states are shown in cases of the vector and tensor currents. In
section 3, the formulism of LFQM is reviewed briefly, then the leading twist LCDAs are
extracted within LFQM. The &-moments of these LCDAs are also calculated. In section
4, numerical results and discussions are presented. Finally, the conclusions are given in
section 5.

2 Leading twist LCDAs of p-wave mesons

Amplitudes of hard processes involving p-wave mesons can be described by the matrix
elements of gauge-invariant nonlocal operators, which are sandwiched between the vacuum
and the meson states,

(0lg(2)T'[z, —z]q(—z)|H(P,¢€)), (2.1)

where P is the meson momentum, € is the polarization vector or tensor (of course, € does
not exist in the case of scalar meson), I is a generic notation for the Dirac matrix structure



and the path-ordered gauge factor is:

1
[z,y] = P exp [igs /0 dt(x —y) Al (te + (1 = t)y) | - (2.2)

This factor is equal to unity in the light-cone gauge which is equivalent to the fixed-point
gauge, (v —y),A"(x—y) = 0, as the quark-antiquark pair is at the light-like separation [31].
For simplicity, the gauge factor will not be shown below.

The asymptotic expansion of exclusive amplitudes, in powers of large momentum trans-
fer, is governed by the expanding amplitude eq. (2.1), shown in powers of deviation from
the light-cone 2 = 0. There are two light-like vectors, p and z, which can be introduced by:

P2 =0, 22 =0, (2.3)

such that p — P in the limit M% — 0 and 2z — z for 22 = 0. From this it follows that [4]

1
2=t — P"W |:P£C —/(Pz)? — x2MIZJ}

H
— gt _pr 4O
Z 2PZ + (x )7
M?2
po— pHo_ nH 24
p M Sp (2.4)
where Pz = P -z and Pz = pz = /(Pz)? — 22M7,. In addition, if the meson is assumed

that it moves in the positive é3 direction, then p™ and 2z~ are the only nonzero component
of p and z, respectively, in an infinite momentum frame. For the axial vector meson, the
polarization vector e is decomposed into longitudinal and transverse projections as:

M?
el =2 (ph— ) =t (2.5)
I pz 2pz 1 I

respectively. For the tensor meson, the polarization tensor is:
" (m) = (11;m'm"|11; 2m) e (m”)e’ (m”), (2.6)

(m is the magnetic quantum number) and €,e(= €*2,) can also be decomposed into
longitudinal and transverse projections as:

oo M2
= () e (27)

LCDAs are defined in terms of matrix element of nonlocal operator in eq. (2.1). For
the scalar (5), axial vector (A), and tensor (T") mesons, the leading twist LCDAs can be
defined as:

1 2
Olan*a(-2ISP) = fs [ du e [pws(u) +zﬂ%§gs<u>] @8
1
Ol wa(~ AP erc0)) = ifaMa [ ez‘ﬁpz{pﬁwm Felga()  (29)
0 pz
_ Z“—Q(;ZzyMigAB(U)}’



1
Q) (AP evsa)) = 4 [ dw @ f ety = pion o (2.10)
262 2
S = A () + (L — ) g A .
1 oo euo
01 TP exco)) = 5 [ e omy + Lgrs) (210

()0 a(~)T(P.exsa) = iff M [ du ﬁ{w%
0

v v M%G” ® v MTQ’
+(p"z" — p¥2t) (p2)? hpy(u) + (¢°2” — €F Z“)WhT?»(U) ;

where u is the momentum fraction and § = (1 —u) —u = 1 — 2u. Here ¢g, ¢4 7|, and
a1 are the leading twist-2 LCDAs, and the others contain contributions from higher-
twist operators. Due to G-parity, ¢s, gs, 34,1, haa,|s hsa 3, Pra,), 914,15 914,35 P15 9T L,
grs, ¢T1, hr|, and hrs are antisymmetric (odd) under replacement u — 1 — u, whereas,
G1a,15 hay, hias, @34, 93a,1, and gsq 3 are symmetric (even) in the quarkonium
states. Therefore, the leading twist LCDAs are normalized as:

1 1
/ du iV (y) =1, / dug e (u) = 1. (2.13)
0 0
and can be expanded [2] in Gegenbauer polynomials 2 (&) as
(&, 11) = Pas() [Z a(p)Cy 2(5)] : (2.14)
1=0

where ¢,5(¢) = 3(1 — £2)/4 is the asymptotic quark distribution amplitude and a;(u) are
the Gegenbauer moments which describe to what degree the quark distribution amplitude
deviates from the asymptotic one. Cl?’ / 2({ )s have the orthogonality integrals

! 200+ 1)(I +2

| a-eciooiemn - 0D 5, (215)
1 2043

Then a; can be obtained by using the above orthogonality integrals as

1
e = 22 |

30+ 100 +2) ), O (€)e(€, n)de. (2.16)

An alternative approach to parameterize quark distribution amplitude is to calculate the
so-called £&-moments

(€)= /_ 1d5 £"P(&, ). (2.17)

To disentangle the twist-2 LCDAs from higher twist in egs. (2.8)—(2.12), the twist-
2 contribution of the relevant nonlocal operator ¢(z)['¢(—z) must be derived. For the



I' = 4#(~5) case, the leading twist-2 contribution contains contributions of the operators

which are fully symmetric in Lorentz indices [32, 33]:

=1 z- D) z- D)t
a2 oatels = 32 a0 T+ "D B agat0), (219

~ — — —
where D = D — D and D = 0 — igB*(A\*/2). The sum can be repressed in terms of a
nonlocal operator,

(G(— 27" (s )a(2)]e /odt%“ 2) 20 )altz). (2.19)

Taking the matrix element between the vacuum and the p-wave meson state, we obtain:
Ol a@NalSP) = fs [ duss(wq e+ (prp) [ a1, 220)
0 0

1 .
(Ol[g(=2)7"v5q(2)]2| A(P; ex=0)) = Z'fAMA/O du¢A|(U){P“]2—Z€’§pZ (2.21)

1
—i—(e“—p“z)/ dteP= 3
b=/ Jo

eitr? (2.22)

(p2)?

ne oo 1 )
+2<€——p" ‘ 2)/ dteirs |
bz (pz) 0

The derivations of eqgs. (2.20)—(2.22) are shown in appendix A. We can use eq. (2.18), and
then expand the right-hand sides of egs. (2.20)—(2.22), as

(O[[g(=2)7"q(2)]2|T (P, ex=0)) = fTM%/O du¢T||(u){p“ ‘

0 5. D\ n(z - Nyn—1 _
> e f E2 e 4 M2 B b0)ls(r)

e n+1 n+1
i 1 1

= sta/ dU¢s(U)(§p2)”{p“+(P“—p“)/o dtt"}, (2.23)
=1 z-D)" n(z- D)"t o
S OO S+ D a0 AP

ol € € !

= ifAMAZ%/O dU¢A||(U)(£pZ)"{p“p—i+ (6“—19"p—i>/0 dtt"}, (2.24)
oo Py \n n(z - Nyn—1 _
> Lo ED D by,
n=0

" 1 " E“ EM. 6“ 1 "
= fTM%nZ%E/O dudr)(u)(€pz) {pﬂw +2 (p—z — pht (pz)2>/0 dtt } (2.25)



respectively. Picking n = 0 in eqs. (2.23) and (2.24), we obtain

1
wwmw@ww»:hwldwwm (2.26)

1
(01g(0)*q(0)|A(P, ex=0)) = ifAMAe“/O dug 4 (w). (2.27)

Note that the tensor meson cannot be produced by the V' — A current, then we pick n =1
in eq. (2.25) and obtain

1
SO0 - Dt ADNONT(P.eso)) = frMtfer [ dugomy(. (229

From the normalization eq. (2.13), we have (0|gy*vs5q|>A1(P,€)) = ifsa, Ms 4, e which is
consistent with the results of [34].

Next, we consider the case of I' = 0,,(75), where the leading twist-2 contribution
contains contributions of the operators:

- N N
B 1 - D)™ n(z- D)1~ o
[G(—2)0" (v5)q =Y —q — { o +)1 ot + 7(271 +)1 DHa®” (2.29)
n=0
n(z-D)"! o
+%Dyau }(75)61(0)-

The sum can be also represented in terms of nonlocal operators:

1
[a(=2)a" (75)a(2)]2 =/ dt [aiq(—t%)a'”(%)q(t%) +zaiq(—t%)a“a(%)q(t%)}
0 2y 0z
(2.30)
Taking the matrix element between the vacuum and the axial-vector and tensor meson
state, we obtain:

(0l[g(—2)a""v5q(2)]2| A(P, €x=x1)) (2.31)

1 1
= fa / du{qm(u) [Sweifp“r ((P¥ — Py — 5™) / dte’ftQW]
0 0

1
—i—(hA”(u) — ¢Ai(u)) [T;weifpz + (u;w _ T;W) /0 dtei§t2pz] }’

(0[g(==2)"" q(2)]2|T (P, €rx=x1)) (2.32)
= ifF My /01 du{Qng(u) [Sluueifpz n (2(6“’13”]; e PH) 38"“’) /01 dt6i§t2p2:|
+(hy () = d71 (u)) [T My giEpz <QZ;W - 3T’W> /0 1 dteigtng] }



where

st

T

S/ul/

TI nv

1 2
=3 (" P” — "PH) — (e 2" eiz“)2—A],
- 2(]72)2 (pﬂz p Zu)a Ut = p—Z(EMZ —¢€ Zu)a
1 . M?
= — (" PV — " P") — (e°2" — ei’z“)—T] ,
2pz 2pz
e”M% , M%
= 2(pz)3 (phz" —p¥z"), um = p—z(e“z" —€e’zM).

(2.33)

The derivations of egs. (2.31) and (2.32) are shown in appendix B. In contrast to egs. (2.20)—
(2.22), the twist-2 LCDAs do not disentangle entirely from the higher twists in eqgs. (2.31)
and (2.32). Taking the product with €, 2, and € 42, in egs. (2.31) and (2.32), respectively,

to obtain,

(0[[g(—=2)0" €1 v59(2)]2| A(P, €x=+1))
_ gl ! l €€ P eigpz ! 6i£t2pz

— 14 [ dwoasgle-eopn) | [
(0[g(=2)0"*€ 1 e (2)]2|T(P, ex=1))

1 1
1 : .
:ifTLMT/ dugr (u)5€" €1y [e@“r / dtelfﬁpﬂ.
0 0

(2.34)

(2.35)

Then, we use eq. (2.29) and expand the right-hand sides of egs. (2.34) and (2.35) as:

=1 _ n—+1 2. D)
>~ oo
1, (n+1)(z D)™
§a<0|q(0)%—H

=i [t 1
15> [ dwoasgle-eoPaens”
n=0 """

. & i 1 1 .
= Zf%MTZ E/o dungl(u)ie“ €1 ue(Ep2)"
n=0

€1 ,,q(0)|T(P, ex=+1))

Picking n = 0 in egs. (2.36) and (2.37), we obtain:

1
(012(0)0™ ¢ 1 1ag (0) [T(P, ex—s1)) = if My / dupy 1 (1) .

0

el ,75q(0)|A(P, ex=x1))

1
1+/ dit®™ |,
0

1
(01g(0)0"* €1, 75q(0)[A(P, ex=+1)) = fj/o dug i (u)(e- e, Pz),

1
1+/ det?" |,
0

(2.36)

(2.37)

(2.38)

(2.39)

It is worth noting that the author of ref. [31] also considered an approach that disentangled

the twist-2 LCDAs from the higher twists, in the case of an axial vector meson state

(I' = o"v5): Besides z,, eq. (2.31) has taken the product with a term proportional to



(euPz— P,ez). We find this approach equivalent to ours. The derivation is as follows. The
term (e,Pz — P,ez) can be expanded by using egs. (2.4) and (2.5) as

ez esz1 esz4
€, Pz — Pyez = pup—ZPz — ZHWPZ +e1,Pz—puez — ZHW
M2
= -z eszA + ELMPZ- (2'40)

The first term of last line has no contribution to the result because ¢ is antisymmetric.

3 General formulism in LFQM

3.1 Framework

A meson bound state, consisting of a quark ¢; and an antiquark ¢ with total momentum
P and spin J, can be written as (see, for example [26]):

M(P2SHI L, L) = / (Ph Ao} 2027363 (P — Ty — Fo)

X Z U (kb ko, My A2) (qn (K, A1) @a(ka, A2)), (3.1)
A1,A2

where k1 and ko are the on-mass-shell light-front momenta,

k= (k* k), k= (KK, k:%, (3.2)
and
dk*d*k
(%} = 2(277)?}’
la(k1, A)a(ks, o)) = b, (k1) (k2)[0), (3.3)
{bx (K), B (k)} = {dx (), d} (k) } = 2(27)° 6°(K' — k) Oy
In terms of the light-front relative momentum variables (u, k) defined by
kW =1 —u)PTt, ky =uP™,
ki, =1 —-u)P, + Ky, kol =uP| — K. (3.4)
The relative momentum in 2 direction k., can be written as
v uMy m3+ K7 (3.5)

2 QUMO

The momentum-space wave-function \Ilfgz for a 2°T1L; meson can be expressed as

- 1
U2 (K, Koy Ary Ag) = N (LS; L.S.|LS; JJ.)RSS; (u, k1) ¢rr.(u.k1),  (3.6)



where ¢ (u, k) describes the momentum distribution of the constituent quarks in the
bound state with the orbital angular momentum L, (LS; L,S,|LS;JJ,) is the correspond-
ing Clebsch-Gordan coefficient and Rfls)fQ constructs a state of definite spin (5, .5,) out of
light-front helicity (A1, A2) eigenstates. Explicitly,

1 11
~.s1s9]==; 59
273132‘227 Z>7

1
R3S, (ukn) = D7 Ry, (1w, ks, m)lsn) (Mol R (u, =1, ma)s2) (5

S$1,52

(3.7)
where |s;) are the usual Pauli spinors, and R/ is the Melosh transformation operator [25]:

my; +uiMy+idsy - KL X 7l

\/(mz + uiMp)? + k7

(s|Rar(uiy k1, mi)|\) = (3.8)

with u1 =1 — u, ug = u, and 7 = (0,0, 1) is a unit vector in the Z-direction. In addition,

2 2 2 2
mi + kK ms5 + K
MG = (e1 +e)? = —=+ + 24 (3.9)
(5] u9

e; = \/m?+ K% + K2

where M is the invariant mass of ¢g and generally different from the mass M of meson

which satisfies M? = P2, This is due to the fact that the meson, quark and anti-quark
cannot be simultaneously on-shell. We normalize the meson state as

(M(P',J', J)|M(P, J, J.)) = 2(2m)* PT6*(P' — P)S, 401, , (3.10)
in order that:
dud’k,
/W ¢ (w k) ern. (u, k1) = 01 O .. (3.11)

Explicitly, we have:

P1L. = KL.¥p; (3.12)

where kK —41 = :F(I{szl:’b'liLy)/\/E, KL.—0 = k. are proportional to the spherical harmonics
Yir, in momentum space, ¢, is the distribution amplitude of p-wave meson. In general,
for any function F(g), ¢p(u) has the form of:

drk .,

F(R), (3.13)

where the normalization factor N is determined from eq. (3.11).
In the case of a p-wave meson state, it is more convenient to use the covariant form of
RY% (25, 28, 36]:

N>
(18; LS, 18; J.J,) kr. RYS: (u k) = ——
V2 My(Mo + my +my)
Xﬂ(kﬁl, )\1)(? + Mo)FQS-HPJU(]CQ, )\2), (314)



where

M()E\/MOQ—(ml—mQ)Q, PEkﬁl—i—ka,
_ / 2m _ K+m
u(k’)‘)u(k’)‘ ) = k_+6)\,)\’a Zu(ka)‘)u(k’ >‘) = Ta
A
2 _
ok, \u(k, N) = —k—TéA,X, 3wk, Aok, A) = kkf”. (3.15)
A
For the scalar, axial-vector, and tensor mesons, we have:
1 K.-P
Iap = — - —
3P, \/g <K MO > )
Iip = —€- K3,
1 K.-P
Isp = — - — —e- K
e (K- 5P) k)
FSPQ = EMVVM(_KV)a (3.16)
where K = (ko — k1)/2 and:
H 2 - p c
Er=t1 = ﬁﬂ(il) <Py, 0, e (£1)],
EL(+1) = F(1,+0)/V2,
1 (Mg +P?
=07 11y (7]% PP (3.17)

Note that the polarization tensor of a tensor meson satisfies the relations: €,, = ¢, and
ewP" = €, = 0. Egs. (3.14) and (3.16) can be further reduced by the applications of
equations of motion on spinors:

N
(185 L.S.|15; 1) kp. RS (uyk 1) = Y——ti(ky, A)Thssip, o(ka, Aa),  (3.18)

Az V2 M
where
72
0 2v/3 M,
Dip, = —€- K7s,
-1 —
I’ :7<M2—26-Km -m > ,
3P, 2\/§M0 ¢M (my 2) ) s
2K+
s, = Py ) (=K"). 3.19
s = (74 S ) CE) (3.19)

3.2 Analysis of Leading twist LCDAs

Next, the matrix elements of egs. (2.26), (2.27), (2.28), (2.38), and (2.39) will be calculated
within LFQM, and the relevant leading twist LCDAs are extracted. For the scalar meson

,10,



state, we substitute egs. (3.1), (3.6), and (3.18) into eq. (2.26) to obtain:

(0l@27"q1|S(P)) = Ne /{dgk }Y B8 (b b, A, A2) (0127 1l n @2)

A1,A2
72
Tr [y# 2! ++m1 My — Ko i‘ mo
ki 2v/3 M k)

= fSP“/duqu(u). (3.20)

—\/ﬁc/{d‘g/ﬁ} e

—¢
\/§M0p

For the ”good” component, © = 4, the leading twist LCDA ¢g can be extracted as:

V2N, [ d*k; [(1 —u)mg — uml]Mo

u) = U, K] ). 3.21
5t = Y1 [ Sy R ) (3:21)
In the quarkonium case m; = mg = m, eq. (3.21) can be further reduced as:
V2 A’k 1—2u)m
ps(u) = L ) op(u, k1). (3.22)

fs J 20273 \Jul — )

A similar process can be used for the axial vector and tensor mesons which correspond
to egs. (2.27), (2.38) and (2.28), (2.39), respectively, and the leading twist LCDAs are
extracted as

a0 = 22 [ S ), (323)
) = 22 zﬁ’;; U2 ) (320
ori) =32 [ 55 T2 oty - ) (629
) = 32 [ s S ), (3.26)
biara () = ff e %MO (w1, (3.27)
o7 (u) = }Ljf 26222'733 (z(_1 2_“1) [m—i— M:fém} op(u, ). (3.28)

From the normalization eq. (2.13), some relations among the constants fjss could be easily
obtained as:

/3
\/ng = f1A1 = \/if?JJAI = foddy and \/Aél = flJAl = fevena (329)
then, the relations among the relevant LCDAs are:
s = Pra,)| = P34, 1 = Podd, and  Pag | = P14, 1 = Peven, (3.30)

— 11 —



where the subscript ”odd (even)” means the odd (even) function of v and

V6 d’k; (1 —2u)m
foda J 2(27)3 \/u(1 — u)
\/6 d2lﬁ_ I{i

B feven 2(27T)3 \/u(l — U)MQ

Note that egs. (3.29) and (3.30) are independent of the form of ¢,. Furthermore, in the
nonrelativistic situation, the momenta ~, | are much smaller than quark mass m, and My

Poda (u)

op(u, k1), (3.31)

(beven (u)

ep(u, K1) (3.32)

can be reduced to approximately 2m. Thus, we have:

fodd = f1 = [, dodd = b1y ~ br1. (3.33)
and

V6 d’k; (1 —2u) My

odd (U) = u, K ). 3.34
Poaa(v) foda J 2(27)3 /u(l —u) 2 oyt L) (3:34)
From egs. (3.32) and (3.34), one can obtain:

fodd =~ fevena (335)

and relate the £&-moments of the ¢even to those of the ¢oqq as

1
~ <£n+ >¢odd

(€ Veven = =1 (3.36)

with the function F' = F(|R|). The derivations of egs. (3.35) and (3.36) are shown in
appendix C. The above results are consistent with those of [6] in the nonrelativistic ap-
proximation.!

Next, we choose a Gaussian-like wave function, as shown in [28]:

44/2 34 [dr, 7|2
op(u, k1) = % <%> dI:L exp( — %), (3.37)

for further calculations. In egs. (3.31) and (3.32), the s, integrations can be performed

as follows:

5/4
Poda(u) = M<g> AT F w] ’ (3.38)

fodd 7T 4’

Peven(u) = w (%)5/4ed{wl“ [—%,w] + 3T E,w] } (3.39)

'For the tensor mesons, ref. [6] has the relation fr = \/g f#. The additional \/g factor is the Clebsch-
Gordan coefficient of the polarization tensor €, for the tensor meson state T'(P, ex—o). This distinction is
from the different definition of ¢7): There is a €., in both hand sides of eq. (2.11). By contrast, in the
upper part of eq. (4) of ref. [6], €., appears only in the left hand side.

- 12 —



where w = d/[4u(1 — u)], d = m?/23? and:

I'a, w] :/ tr e tat

w

is the incomplete Gamma function. The incomplete gamma function may be expressed

quite elegantly in terms of the confluent hypergeometric function:
Tla,w] =T'[a] —a 'w® x 1Fi(a;a + 1; —w), (3.40)

where

o0
(a1)n( (@) wh
Filai,as,...,a;;a;,a5,...,d"; — 3.41
O A D s W ms AN (3.41)
and (a), = (a+n—1)!/(a — 1)! is the Pochhammer symbol. However, the x, integrals in
egs. (3.25) and (3.28) cannot be analytically performed. The crux is the term proportional
to 1/My 4 2m. This term may be rewritten and expanded as:

K2 _ K2 :ﬁ 1 My —2m n (3.42)
M0—|-2m 4m(1+%4;n12m) 4dm 4dm Ul '

We only consider the first two terms in the square bracket of eq. (3.42) because My — 2m
goes to zero in the non-relativistic approximation. Then, the approximate form of, for
example, ng”(u) which containing the first one term and first two terms in the square
bracket of eq. (3.42) are defined as:

2/{ — ZU K/Q
P e
V6 d?k 1-—2u K2 My — 2m
=% [ s (u(l_i) o= 1 (1= 2 ), ()

respectively. The x| integrals can be performed as:

oy () = W(;)ffed{ — %r E,w] —~ ﬁr B,w} +4Tﬂmr E,w} },(3.45)
s = 02 (3l s[5 Se[t ] )
7| fr T 8 |4 8w |4 4/2m |4

+4\/§me [%,w} } (3.46)

We can find that the both curves of QS(Tll)l (u) and gbg? (u) are almost overlap each other by
using the parameters in table 1 (See section 4). Therefore we only consider the first term

in the square bracket of eq. (3.42) and take the approximation ¢ (u) =~ gbgﬁ (u). Finally
the form of ¢ (u) is:

o1 (u) ~ \/6(12%;“% (%)5/4ed{r E,r] + %r B,w} } (3.47)
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In addition, the {-moments of egs. (3.38), (3.39), (3.45), and (3.47) can be analytically
expressed as:

d5/AT [ ] 1 9 T [é] 3 1
20+1 _ 2. 4 Ty
<£ >¢odd = Aodd{ F[§+l:| 1F1 < 4 l747_d> +P|:%+l:| lFl ( 2 la 4)_d> }?

4
(3.48)
41T 1] 3 03 17
21 _ 4 -2 d)= S e S
<£ > even AeVen{F [%‘i‘l] 1 1( l? ’ ) 2F2< 4 l74a 4547 >
3 [F] 3 3
- By (—s—l—=5d 4
4P|:%+l:|11<2 3 47 > ’ (3 9)
V28T [ 2] 1 9 5 1 9513
20+1 ~ 4 I M e S B |
(5 >¢T _AT{—P [%4—[] |:3 1F1< 4 l,4,—d+>+92F2< A l,4,4, 47 >:|
VoI [3] [5 3 5 3 1
oy [ (3 ged) 00 (5 -tiegid)
g T[] ( 3 3 > d7AT -1 (1 11 >
165 | === \F (—c—l-Sd |+ —5—2 1B (- —d
Rl e I R I E e A VI ’
(3.50)

2r [§] 3 5 4+ 2 5 5
—— === | - F|——=—1l;——:—d 3.51
+dl‘[%+l]1 1< 2 ) 4, > 5+2l1 1( 2 ) 4a > ) ( )
where
9 5/4 9 5/4 1
Aggq = Vom <_> eI [3 + z} Avven = V35 <_> 4T [ + z}
2fodd T 8feven

5/4 5/4
ar=2 (2) 7 e fi] a3 () ],

and [ is a non-negative integer. The derivations of eqs. (3.48)—(3.51) used the formula:

b—-1
1F1(a; b; C) = T [ 1F1(a;b — 1;0) — 1F1(a — 1;b — 1;0)] 5 (3.52)

which is easily checked from the definition of the confluent hypergeometric function

eq. (3.41).

4 Numerical results and discussions

In this section, the LCDs, constants fs, and £&-moments are estimated. Prior to numerical
calculations, the parameters m and 3, which appeared in the wave function, must be
determined firstly. We consider the Hamiltonian of the p-wave heavy quarkonium state as:

= 4o
H:2\/m2—|—I€2+b’l“—3—;+915‘L+92512 + 9381 - 82, (4.1)
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b(GeV?) Qs m.(GeV) Bec(GeV) my(GeV)  Gp(GeV)
0.18 +0.02 0.36 1387001 048970010 [ 4.76 F0.02 0.79170053
0.18 0.36 +0.04 | 1.38 +0.01  0.489 +0.007 | 4.76 +£0.02 0.79170022

Table 1. The connections among the parameters b, oy and m, @ of the p-wave heavy quarko-
nium states.

4o

where br (—=5=) is the linear (Coulomb) potential, S12 = (3s1 -7 s2 -7 — 51 - 52) is the

tensor force operator, and g; 23 are the functions of the relevant interquark potentials
(the details are shown in, for example, [37, 38]). In this way, the mass difference between
the spin-single ground state M (!P;) and the spin-weighted average of the triplet states
M@3Py) = [M(3Py)+3MEGP) +5M(3P,)]/9 only has the contribution which comes from
the spin-spin interaction.? Experimentally this hyperfine splitting is less than 1 Mev [16]
in charmonium sector, and can be neglected here. Then, we can use the mass M (>Py) and
its variational principle for the Hamiltonian eq. (4.1) in order to determine parameters m
and (. In the process, the conjugate coordinate wave function of eq. (3.37)

B 8 3/2 2,.2
P (1) = \/g% pr exp (—B; >Y1m(9,¢), (4.2)

is necessary. The values of the additional parameters b and o, come from literature [39]:

b=0.18 GeV?,  a,=0.36, (4.3)

for the heavy quarkonium states. We individually vary b and a to realize how they connect
to m and 3. The results are shown in table 1. We find the parameters m and (3 insensitively
depend on b and a.

Next, we use the center values of the parameters in table 1 to calculate and plot the
LCDAs in egs. (3.38), (3.39), (3.45), and (3.47). The results are as follows:

foaa = 0.0884 GeV, feven = 0.109 GeV,
Jr = 0.124 GeV, fri =0.0978 GeV, (4.4)

for the charmonium states, and

Joad = 0.0674 GeV, foven = 0.0716 GeV,
fry = 0.0750 GeV, fri=0.0692 GeV, (4.5)

for the bottomonium state. The curves of LCDAs are shown in figures 1 and 2. These
results are consistent with eqs. (3.33) and (3.35). In addition, the curve of ¢**(¢) in figure
2, in which ¢ is peaked around zero, was sharper than that of ¢°“(£). This meant that
the momentum fraction « in the bottomonium state is more centered on 1/2 than in the
charmonium state, which is reasonable, as the mass of b quark is larger than that of ¢
quark. A similar situation exists for the odd functions in figure 1.

2The calculations of the expectation values of the fourth and fifth terms for the Hamiltonian eq. (4.1)
can refer to the appendix of ref. [40].
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Figure 1. The LCDAs ¢oq4(§) (solid line), ¢ (&) (dashed line), and ¢, (§) (long dashed line) of
the charmonium and bottomonium states. The solid line completely overlaps the long dashed line.
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Figure 2. The LCDAS ¢eyen(§) of the charmonium (solid line) and bottomonium (dashed line)
states.

Finally we show the LCDAs in terms of the &-moments. egs. (3.48), (3.50), (3.51),
and (3.49) are calculated for [ = 3,5,7 and | = 2,4, 6, respectively. The results, which
compare with the other theoretical evaluations, are as shown in tables 2 and 3. In table 2,
refs. [6] used the QCD sum rules with the non-relativistic wave functions. The authors of
ref. [41] calculated in the framework of the Buchmuller-Tye potential model, and found their
results are in agreement with experiments which included the leptonic widths and hyperfine
splittings. The authors of [42] calculated in the Cornell potential. For the charmonium
sector, our results are not only consistent with those of [6, 41, 42], but also conform to
eq. (3.36). In the framework of NRQCD, the authors of ref. [6] related the relative velocity
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moment | this work | [6] [41] | [42]
(€3 poaa | 0.190 0.18 +0.03 0.18 | 0.16
(€% pouq | 0.0507 0.050 +0.010 | 0.047 | 0.040
(€M) gy | 0.0164 0.017 +£0.004 | 0.016 | 0.013
(€)or | 0206
(€%)pr | 0.0583
(€M) | 0.0198
4y, | 0.188
EYsp, | 0.0498
Ny, | 0.0160
(&%) 0.0662 0.06 + 0.01

(&) 0.0110 0.010 + 0.002
(£9) 0.00261 | 0.0024 4 0.0006

Table 2. The ¢-moments for the p-wave charmonium states. (T (€. = EDn- ¥ (E)goven =
(€ n /(i +1))

(€%)oaq | 0-0666 | (€%)p, | 0.0691 | (€%)p, | 0.0665 | (§%)pe, | 0.0226
(€%) pouq | 0.00685 | (€9)4,. | 0.00735 | (£°) 0.00684 | (M4,0en | 0.00142

ér,

(€M) goaq | 0:000922 | (€7)g, | 0.00102 | (€7)gp | 0.000919 | (€%, | 0.000139

Table 3. The £&-moments for the p-wave bottomonium states in this work.

of quark-antiquark pair inside the p-wave charmonium state to the &~-moments as:

n _n+3
(v >p— 3

If the &-moments ("), are considered, we obtain:

(") + 0" (4.6)

(v?), = 0.317,
(), = 0.118,
(%), = 0.0492,

for the charmonium sector and

(%), = 0.111,
("), = 0.0160,
(%), = 0.00277,

for the bottomonium sector. These results are consistent with the values (v?).. ~ 0.3 and
(v2)yp & 0.1 used in NRQCD.

5 Conclusions

This study discussed the leading twist LCDAs of the p-wave heavy quarkonium states
within the light-front approach. The twist-2 LCDAs have been disentangled from the
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higher twists by appropriately coping with the nonlocal operators G(—z)I'q(z). For the
I' = 6, (75) case, we proved that our method is equivalent to that of ref. [31]. Next, these
LCDAs have been shown in terms of the light-front variables (u, ;) and the relevant decay
constants. We found that the decay constants and LCDAs had the following relations:
V3fs = fia, = V2fiy, (= fodd) foa,/V2 = [ih,(Z feven), and g5 = dra,| = ¢sa, 1 (=
Podd)s P34, = P14, L (= Peven). 1f one takes the non-relativistic limit and the wave function
as a function of |K|, then the above relations among the decay constants could be further
simplified as foqq ~ fr =~ f% ~ feven, and in addition, the &-moments of ¢oqq and Peven
have the relation: (§")4. .. = (€")goaa/(n +1).

The k| integrations for the equations of LCDAs and {-moments could be analytically
performed when the Gaussian-type wave function is considered. The parameters m and (3,
which appear in the wave function, were determined by taking the mass of the spin-weighted
average of the triplet state M (>Py) and the variational principle for its Hamiltonian into
account. We found the parameters m and [ insensitively depended on the linear potential
constant b and the strong coupling constant as. The curves and the corresponding decay
constants of the LCDAs ¢oad, @7, ¢7.1, and ¢even were plotted and calculated for the
charmonium and bottomonium states. These results are consistent with the relations which
are mentioned in last paragraph. However, the value of f,qq is about a factor of two smaller
than that in [6] which was studied within QCD sum rules. In addition, the first three ¢-
moments were calculated, and were consistent with those of other theoretical approaches.
The relative velocity of quark-antiquark pair (v?) of charmonium and bottomonium states
were also estimated and were consistent with those used in NRQCD.

Acknowledgments

The author would like to thank Kwei-Chou Yang and A. V. Luchinsky for their helpful
discussions. This work is supported in part by the National Science Council of R.O.C.
under Grant No NSC-96-2112-M-017-002-MY 3.

A Derivations of egs. (2.20)—(2.22)

Firstly, egs. (2.8), (2.9), and (2.11) are rewritten as

1
0

Ol ra(==)S(P) = fs [ du e {Pmsw) + 25 las(w) - ¢s<u>1} (A1)

1
(0[g(2)7u159(—2)|A(P, €x=0)) = Z'fAJVfA/O du eigpz{eumn(u) +erp (91 (u) = day(u)]

gy M [gaal) — 0] } (4.2)
1 €10 €10
(013(2)vua(—2)|T(P,ex=0)) = frM7 /0 du eifpz{p%%n(u) + % lgr1(u) = &y (u)]

— zﬂﬁw [g73(u) — dry ()] } (A.3)
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respectively. Next, we sandwich both sides of eq. (2.19) between the vacuum and, for
example, the scalar meson state

1

(0llg(=2)7uq(2)l2|S(P)) :/0 dt%@lfi(—t?«‘) 7q(t2)|S(P)) (A.4)

1 o 1 )
= fs/ dt—Pz/ due®P* g (u)
0

azl‘ 0

1 1 1
= fs /O du¢S(u){Pu /O dte€** + p,, (i€ P2) /O dtteiﬁtPZ}.

The second term of the last line can be further calculated as:
! ' Pz ! 0 . Lo
pu(szz)/ dtte’r* = p,—= / dit—e®P= = p, | ¥P7 — / dte€*| . (A.5)
0 pz Jo ot 0

We can substitute eq. (A.4) for eq. (A.5) and obtain eq. (2.20). In addition, the same
process can be used to obtain egs. (2.21) and (2.22). In fact, the above process has been
used for the vector meson state in ref. [32].

B Derivations of egs. (2.31) and (2.32)
Egs. (2.10) and (2.12) can be rewritten as:
1
(019(2)0754(=2)|A(P; ex=11)) = fi/o du elgpz{(ﬁupu — & Pu)par(u)

262
(e — pym%m”(u) b (W)

2
(€120 — Eluz,u)%[hAfi(u) - ¢Ai(u)]}, (B.1)

1 p—
O~ ) = ifidy [ au oo { LBty )

260.
(o — pym%[m(u) ~ bra ()
2

M.
s lha(u) - ¢u<u>1},<B-2>

respectively. Then, we sandwich both sides of eq. (2.30) between the vacuum and, for

+(€LMOZV - eLouz,u)

example, the axial-vector meson state,

(Ollg(=2)ru754(2)]2| A(P; €x=1))

1
= / dt [%<O\q(—tzz)0.yfy5q(t22)]A(P, €) + zo‘%(0]@(—t2z)aua’y5q(t2z)\A(P, €))
0

1
= fi/o du{@u(u)

+(haj(u) = dpar(u))

1 1
(€uPy — €, Py) / dte’r 4 2pzSW(i£)/ 2t (B.3)
0 0

1 1
Uy / dtei € 4 2p2 T, (i€) / dtt2@ift2pzl}.
0 0
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We can further calculate the integral as:

1 1
Z§/ dtt2 i£t?pz _ 21 / dtt%eiﬁﬂpz _ 2L |:ei§pz _/ dteithPZ] , (B.4)
Dz D=z 0

and then substitute eq. (B.3) for eq. (B.4) to obtain eq. (2.31). The same process can be
used to obtain eq. (2.32).

C Derivations of egs. (3.35) and (3.36)

From egs. (3.32), (3.34) and the normalization eq. (2.13), we have

1 d2 M,
foaa = 8 [ ase [ L5 §27°sop<§, ). )
d2
feven - \/_/ d{/ QIZ_l \/—SQM “Pp §7 KJ_) (Cz)

Taking egs. (C.1) and (C.2) integration by parts with respect to ni and &, respectively, and
using normalization conditions: ¢, (&, ) must go to zero when ¢ (k) go to £1 (infinity),
and thus, we can obtain:

N ! Pk, 5 € d [My
fodd — _\/6/1 d&f/ 2(271')3 K1 \/mdﬁi [T@p(& HJ_):| ) (C?’)
B ! ki 5 d 11
feven = —\/6/_16%5/ 22 L g [\/17——52%%(5’ 'ﬂ)] : (C4)
From eq. (3.13), the differentiations in egs. (C.3) and (C.4) can be expanded as:
_ & 4 [% (& )] — 3¢ F(R) + ﬂip(g) (C.5)
Ji_@d 2 7 T L - ) 2(1 - €) dr?, '
d 11 B 3¢ B 1 d
& [\/T—éﬂﬁo%(&fﬂ) RN 52)2F(f€) + Vo) dEF(K)’ (C.6)

respectively. If the function F' = F(|K]), one can expand the arbitrary function F(|R|) as a
polynomial of |R|:

= Rl (C.7)

Using the relation |7| = \/Mg/4 —m?, one can calculate the differentiations in eqs. (C.5)
and (C.6) as

§M3/2 d 1 5SM?,/Q 2 5/2—1
st eae = e 19 - Zeqimes (1) ©
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Then, eq. (3.35) is obtained. Regarding the {-moments of ¢oqq and Geven, we have:

/ ££n+1/ (f ’{§ 15_52]? ©p (5 /{l), (Cg)

n dz”L
feven / dee / 271' \/—é-QM SDP ) (ClO)

Using the above processes, eq. (3.36) can be obtained.

<£n+1 > bodd —

f odd

(€") peven
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